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Monotone operators
Throughout this talk

X is a real Hilbert space

with inner product 〈·, ·〉, and induced norm ‖·‖.
Recall that an operator A : X ⇒ X is monotone if

(x , u), (y , v) ∈ grA⇒ 〈x − y , u − v〉 ≥ 0.

Recall also that a monotone operator A is maximally monotone if A cannot
be properly extended without destroying monotonicity.
In the following we assume that

A and B are maximally monotone operators on X .

The problem:
Find x ∈ X such that

x ∈ zer(A+ B) := (A+ B)−1(0).
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Connection to optimization

The problem:
Find x ∈ X such that

x ∈ zer(A+ B) := (A+ B)−1(0).

When A and B are subdifferential operators we recover the setting of
many optimization problems,

for instance:
I Choosing A = ∂f and B = ∂ιC = NC , the sum problem reduces to

solving the constrained convex optimization:
minimize f (x)
subject to x ∈ C

}
−→ find x ∈ X such that 0 ∈ (∂f +NC )x .

I Choosing A = ∂ιU = NU and B = ∂ιV = NV , the sum problem reduces
to solving the convex feasibility problems:

find x such x ∈ U ∩ V −→ find x ∈ X such that 0 ∈ (NU +NV )x .

We shall use ιU and NU to denote the indicator function and the normal cone operator
of a nonempty closed convex subset U of X .
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Firmly nonexpansive operators and resolvents

Definition (resolvent and reflected resolvent)
The resolvent and the reflected resolvent of A are the operators

JA := (Id+A)−1, RA := 2JA − Id .

Example

I Let f : X → ]−∞,+∞] be proper lower semicontinuous convex
function. Let A := ∂f ⇒ JA = (Id+∂f )−1 = Proxf , where Proxf is the
Moreau prox operator of the function f .

I Suppose that U is a nonempty closed convex subset of X . Let
A := NU ⇒ JA = (Id+NU )

−1 = ProxιU = PU .

Fact

JA is firmly nonexpansive and RA is nonexpansive.

Let T : X → X . Then T is nonexpansive if ‖Tx −Ty‖ ≤ ‖x − y‖.
T is firmly nonexpansive if ‖Tx −Ty‖2 + ‖(Id−T )x − (Id−T )y‖2 ≤ ‖x − y‖2.
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The Douglas–Rachford splitting operator

The Douglas–Rachford splitting operator associated with the ordered pair
(A,B) is

T := TA,B := Id−JA + JBRA = 1
2 (Id+RBRA).

I T is firmly nonexpansive.

I Thanks to Combettes, we know

JA(FixT ) = zer(A+ B).

The resolvent and the reflected resolvent of A are the operators JA := (Id+A)−1 and
RA := 2JA − Id, respectively.
zer(A+B) = (A+B)−1(0).
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Known results

Suppose that

zer(A+ B) :=
{
x ∈ X

∣∣ 0 ∈ Ax + Bx
}
6= ∅.

I Combettes (2004) JA(FixT ) = zer(A+ B). Consequently,

FixT 6= ∅⇔ zer(A+ B) 6= ∅.

I Krasnosel’skĭı–Mann (1950s)

T nx −−−→
weakly

some point in FixT 6= zer(A+ B).

I Lions–Mercier (1979) and Svaiter (2011)

JAT
nx −−−→

weakly
some point in zer(A+ B).
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I Krasnosel’skĭı–Mann (1950s)

T nx −−−→
weakly

some point in FixT 6= zer(A+ B).

I Lions–Mercier (1979) and Svaiter (2011)

JAT
nx −−−→

weakly
some point in zer(A+ B).

6



Known results

Suppose that

zer(A+ B) :=
{
x ∈ X

∣∣ 0 ∈ Ax + Bx
}
6= ∅.

I Combettes (2004) JA(FixT ) = zer(A+ B). Consequently,

FixT 6= ∅⇔ zer(A+ B) 6= ∅.

I Krasnosel’skĭı–Mann (1950s)
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DR for two lines in R3

A = NU , B = NV and T = Id−PU + PV (2PU − Id).

7

U = the blue line,
V = the red line,
(T nx0)n∈N = the red sequence,

(PUT
nx0)n∈N = the blue sequence.



Motivation

Recall that when
zer(A+ B) 6= ∅

we have:

I Combettes (2004) JA(FixT ) = zer(A+ B). Consequently,

FixT 6= ∅⇔ zer(A+ B) 6= ∅.

I Krasnosel’skĭı–Mann (1950s)

T nx −−−→
weakly

some point in FixT 6= zer(A+ B).

I Lions–Mercier (1979) and Svaiter (2011)

JAT
nx −−−→

weakly
some point in zer(A+ B).

I Question: What happens when zer(A+ B)= ∅ ?
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Inconsistent feasibility problem

Not every sum problem admits a solution:

I Suppose that U and V are nonempty closed convex subsets of X such
that U ∩ V = ∅.

I Set A := NU and B := NV .

I Then zer(A+ B) = (A+ B)−1(0) = U ∩ V = ∅.

I By an earlier fact1 we have zer(A+ B) = ∅⇔ FixT = ∅.

1Fact (Combettes (2004)): JA(FixTA,B ) = zer(A+B).
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The w -perturbed problem

Let w ∈ X and x ∈ X . The corresponding inner and outer perturbations of A
are

Awx := A(x − w) and wAx := Ax − w .

The w -perturbed problem associated with (A,B) is to find a point in the set
of zeros

Zw := zer (wA,Bw ) =
(
wA+ Bw

)−1
(0)

=
{
x ∈ X

∣∣ w ∈ Ax + B(x − w)
}

.

Proposition

Zw 6= ∅⇔ w ∈ ran(Id−T ).
Corollary {

w ∈ X
∣∣ Zw 6= ∅

}
= ran(Id−T ).
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The normal problem: Definition

The normal problem associated with (A,B) is to find a point in the set of
zeros

Zv := zer (vA,Bv ) =
(
vA+ Bv

)−1
(0) =

{
x ∈ X

∣∣ v ∈ Ax + B(x − v)
}

.

where
v := v(A,B) := Pran(Id−T )(0)

is the minimal displacement vector of (A,B) and the set of normal solutions
is Zv = Zv(A,B)

.

I The normal problem is well defined: Indeed, Id−T is maximally
monotone and consequently ran(Id−T ) (Fact) is closed and convex.

I T(vA,Bv ) = T−v = T (·+ v).

I If (A,B) = (∂ιU , ∂ιV ) = (NU ,NV ) then

v = PU−V (0) and Zv = U ∩ (v + V ).

Tv = T (· − v ).
11
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Motivation

Recall that U ∩ V could be possibly empty. We recall also that

v := PU−V (0) = Pran(Id−T )(0).

In the following we assume that

v ∈ ran(Id−T ).

So far we have:

I (∀x ∈ X ) T nx − T n+1x → v . (Fact)

I (∀x ∈ X ) PU ((T−v )
nx + v)→ a best approximation solution. (Fact)

Question: Can we come up with one algorithm that finds a best
approximation solution and the gap vector (or even just a best approximation
solution)?

T−v = T (·+ v ).
12



Motivation

Recall that U ∩ V could be possibly empty. We recall also that

v := PU−V (0) = Pran(Id−T )(0).

In the following we assume that

v ∈ ran(Id−T ).

So far we have:

I (∀x ∈ X ) T nx − T n+1x → v . (Fact)

I (∀x ∈ X ) PU ((T−v )
nx + v)→ a best approximation solution. (Fact)

Question: Can we come up with one algorithm that finds a best
approximation solution and the gap vector (or even just a best approximation
solution)?

T−v = T (·+ v ).
12



Motivation

Recall that U ∩ V could be possibly empty. We recall also that

v := PU−V (0) = Pran(Id−T )(0).

In the following we assume that

v ∈ ran(Id−T ).

So far we have:

I (∀x ∈ X ) T nx − T n+1x → v . (Fact)

I (∀x ∈ X ) PU ((T−v )
nx + v)→ a best approximation solution. (Fact)

Question: Can we come up with one algorithm that finds a best
approximation solution and the gap vector (or even just a best approximation
solution)?

T−v = T (·+ v ).
12



Motivation

Recall that U ∩ V could be possibly empty. We recall also that

v := PU−V (0) = Pran(Id−T )(0).

In the following we assume that

v ∈ ran(Id−T ).

So far we have:

I (∀x ∈ X ) T nx − T n+1x → v . (Fact)

I (∀x ∈ X ) PU ((T−v )
nx + v)→ a best approximation solution. (Fact)

Question: Can we come up with one algorithm that finds a best
approximation solution and the gap vector (or even just a best approximation
solution)?

T−v = T (·+ v ).
12



Motivation

Fact (Pazy (1970))
Suppose that T : X → X is nonexpansive such that FixT = ∅. Then
(∀x ∈ X ) ‖T nx‖ → +∞.

Fact (Bauschke-Combettes-Luke (2004))
Suppose that U and V are nonempty closed convex subsets of X such that
U ∩ V = ∅. Then (∀x ∈ X ) the shadow sequence (PUT

nx)n∈N is bounded
and its weak cluster points lie in U ∩ (v + V ), hence are best approximation
solutions.

Let T : X → X . Then T is nonexpansive if ‖Tx −Ty‖ ≤ ‖x − y‖.
13
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The case of infeasible affine subspaces: Example

Figure: A GeoGebra snapshot. Two nonintersecting affine subspaces U (blue line)
and V (red line) in R3. Shown are also the first few iterates of (T nx0)n∈N (red
points) and (PUT

nx0)n∈N (blue points).
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New useful identities

Let (a, b, z) ∈ X 3. Then

‖z‖2 = ‖z − a+ b‖2 + ‖a− b‖2 + 2〈a, z − a〉+ 2〈b, 2a− z − b〉.

Theorem
Let x ∈ X and let y ∈ X . Then

‖x − y‖2 = ‖Tx − Ty‖2 + ‖(Id−T )x − (Id−T )y‖2

+ 2〈JAx − JAy , JA−1x − JA−1y〉
+ 2〈JBRAx − JBRAy , JB−1RAx − JB−1RAy〉.

Proof.
Apply the above identity with (a, b, z) replaced by
(JAx − JAy , JBRAx − JBRAy , x − y) and use that T = Id−JA + JBRA.
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Corollary
Let x ∈ X and let y ∈ X . Then the following hold:

(Id−T )T nx − (Id−T )T ny → 0,
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New Fejér monotonicity principle

Lemma
Suppose that

I E is a nonempty closed convex subset of X ,

I (xn)n∈N is a sequence in X that is Fejér monotone with respect to E ,
i.e.,

(∀e ∈ E )(∀n ∈N) ‖xn+1 − e‖ ≤ ‖xn − e‖,
I (un)n∈N is a bounded sequence in X such that its weak cluster points

lie in E ,

I and
(∀e ∈ E ) 〈un − e, un − xn〉 → 0.

Then (un)n∈N converges weakly to some point in E .

Remark

(xn)n∈N = (un)n∈N ⇒ we recover the classical Fejér monotonicity principle!

17



New Fejér monotonicity principle

Lemma
Suppose that

I E is a nonempty closed convex subset of X ,

I (xn)n∈N is a sequence in X that is Fejér monotone with respect to E ,
i.e.,

(∀e ∈ E )(∀n ∈N) ‖xn+1 − e‖ ≤ ‖xn − e‖,
I (un)n∈N is a bounded sequence in X such that its weak cluster points

lie in E ,

I and
(∀e ∈ E ) 〈un − e, un − xn〉 → 0.

Then (un)n∈N converges weakly to some point in E .

Remark

(xn)n∈N = (un)n∈N ⇒ we recover the classical Fejér monotonicity principle!

17



New Fejér monotonicity principle

Lemma
Suppose that

I E is a nonempty closed convex subset of X ,

I (xn)n∈N is a sequence in X that is Fejér monotone with respect to E ,
i.e.,

(∀e ∈ E )(∀n ∈N) ‖xn+1 − e‖ ≤ ‖xn − e‖,
I (un)n∈N is a bounded sequence in X such that its weak cluster points

lie in E ,

I and
(∀e ∈ E ) 〈un − e, un − xn〉 → 0.

Then (un)n∈N converges weakly to some point in E .

Remark

(xn)n∈N = (un)n∈N ⇒ we recover the classical Fejér monotonicity principle!

17



New Fejér monotonicity principle

Lemma
Suppose that

I E is a nonempty closed convex subset of X ,

I (xn)n∈N is a sequence in X that is Fejér monotone with respect to E ,
i.e.,

(∀e ∈ E )(∀n ∈N) ‖xn+1 − e‖ ≤ ‖xn − e‖,
I (un)n∈N is a bounded sequence in X such that its weak cluster points

lie in E ,

I and
(∀e ∈ E ) 〈un − e, un − xn〉 → 0.

Then (un)n∈N converges weakly to some point in E .

Remark

(xn)n∈N = (un)n∈N ⇒ we recover the classical Fejér monotonicity principle!

17



New Fejér monotonicity principle

Lemma
Suppose that

I E is a nonempty closed convex subset of X ,

I (xn)n∈N is a sequence in X that is Fejér monotone with respect to E ,
i.e.,

(∀e ∈ E )(∀n ∈N) ‖xn+1 − e‖ ≤ ‖xn − e‖,
I (un)n∈N is a bounded sequence in X such that its weak cluster points

lie in E ,

I and
(∀e ∈ E ) 〈un − e, un − xn〉 → 0.

Then (un)n∈N converges weakly to some point in E .

Remark

(xn)n∈N = (un)n∈N ⇒ we recover the classical Fejér monotonicity principle!

17



New Fejér monotonicity principle: proof

I Step 1: (∀(e1, e2) ∈ E × E ) 〈e2 − e1, un − xn〉 =
〈un − e1, un − xn〉 − 〈un − e2, un − xn〉→ 0.

I Step 2: Obtain four subsequences (xkn )n∈N, (xln )n∈N, (ukn )n∈N and
(uln )n∈N such that xkn ⇀ x̄1, xln ⇀ x̄2, ukn ⇀ e1 and uln ⇀ e2. Taking
the limit in view of Step 1 along these subsequences we have
〈e2 − e1, e1 − x̄1〉 = 0 = 〈e2 − e1, e2 − x̄2〉 hence
‖e2 − e1‖2 = 〈e2 − e1, x̄2 − x̄1〉.

I We recall the following fact: Let (xn)n∈N be a sequence in X that is Fejér

monotone with respect to a nonempty closed convex subset C of X . Let w1

and w2 be weak cluster points of (xn)n∈N. Then w1 −w2 ∈ (C − C )⊥.

I Step 3: Since {e1, e2} ⊆ E , applying the previous fact with (w1,w2,C )
replaced by (x̄1, x̄2,E ) we conclude that 〈e2 − e1, x̄2 − x̄1〉 = 0. By
Step2, e1 = e2.

Lemma: Suppose that E is a nonempty closed convex subset of X , that (xn)n∈N is a
sequence in X that is Fejér monotone with respect to E , i.e.,
(∀e ∈ E )(∀n ∈N) ‖xn+1 − e‖ ≤ ‖xn − e‖, that (un)n∈N is a bounded sequence in X
such that its weak cluster points lie in E , and that (∀e ∈ E ) 〈un − e, xn − un〉 → 0. Then
(un)n∈N converges weakly to some point in E .
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Application to the convex feasibility problem

Theorem
Suppose that U and V are nonempty closed convex subsets of X , and that
U ∩ (v + V ) 6= ∅. Let x ∈ X . Then (PUT

nx)n∈N converges weakly to
some point in U ∩ (v + V ).

Proof.
Let y ∈ U ∩ (v + V )⊆Fix(v + T ) (Fact). Then PUT

ny = y and
T ny = y − nv (Fact). We have

〈PUT
nx − y ,T nx + nv − PUT

nx〉
= 〈PUT

nx − y ,T nx − PUT
nx − (y − nv−y)〉

= 〈PUT
nx − y ,T nx − PUT

nx − (T ny − PUT
ny)〉

= 〈PUT
nx − PUT

ny , (Id−PU )T
nx − (Id−PU )T

ny〉
→ 0,

where the limit follows from an earlier result.

When A = NU and B = NV we have T = TA,B = Id−PU + PV (2PU − Id).
19



Application to the convex feasibility problem

Theorem
Suppose that U and V are nonempty closed convex subsets of X , and that
U ∩ (v + V ) 6= ∅. Let x ∈ X . Then (PUT

nx)n∈N converges weakly to
some point in U ∩ (v + V ).

Proof.
Let y ∈ U ∩ (v + V )⊆Fix(v + T ) (Fact).

Then PUT
ny = y and

T ny = y − nv (Fact). We have

〈PUT
nx − y ,T nx + nv − PUT

nx〉
= 〈PUT

nx − y ,T nx − PUT
nx − (y − nv−y)〉

= 〈PUT
nx − y ,T nx − PUT

nx − (T ny − PUT
ny)〉

= 〈PUT
nx − PUT

ny , (Id−PU )T
nx − (Id−PU )T

ny〉
→ 0,

where the limit follows from an earlier result.

When A = NU and B = NV we have T = TA,B = Id−PU + PV (2PU − Id).
19



Application to the convex feasibility problem

Theorem
Suppose that U and V are nonempty closed convex subsets of X , and that
U ∩ (v + V ) 6= ∅. Let x ∈ X . Then (PUT

nx)n∈N converges weakly to
some point in U ∩ (v + V ).

Proof.
Let y ∈ U ∩ (v + V )⊆Fix(v + T ) (Fact). Then PUT

ny = y and
T ny = y − nv (Fact).

We have

〈PUT
nx − y ,T nx + nv − PUT

nx〉
= 〈PUT

nx − y ,T nx − PUT
nx − (y − nv−y)〉

= 〈PUT
nx − y ,T nx − PUT

nx − (T ny − PUT
ny)〉

= 〈PUT
nx − PUT

ny , (Id−PU )T
nx − (Id−PU )T

ny〉
→ 0,

where the limit follows from an earlier result.

When A = NU and B = NV we have T = TA,B = Id−PU + PV (2PU − Id).
19



Application to the convex feasibility problem

Theorem
Suppose that U and V are nonempty closed convex subsets of X , and that
U ∩ (v + V ) 6= ∅. Let x ∈ X . Then (PUT

nx)n∈N converges weakly to
some point in U ∩ (v + V ).

Proof.
Let y ∈ U ∩ (v + V )⊆Fix(v + T ) (Fact). Then PUT

ny = y and
T ny = y − nv (Fact). We have

〈PUT
nx − y ,T nx + nv − PUT

nx〉
= 〈PUT

nx − y ,T nx − PUT
nx − (y − nv − y)〉

= 〈PUT
nx − PUT

ny ,T nx − PUT
nx − (T ny − PUT

ny)〉
= 〈PUT

nx − PUT
ny , (Id−PU )T

nx − (Id−PU )T
ny〉

→ 0,

where the limit follows from an earlier result.

When A = NU and B = NV we have T = TA,B = Id−PU + PV (2PU − Id).
19



Application to the convex feasibility problem

Theorem
Suppose that U and V are nonempty closed convex subsets of X , and that
U ∩ (v + V ) 6= ∅. Let x ∈ X . Then (PUT

nx)n∈N converges weakly to
some point in U ∩ (v + V ).

Proof.
Let y ∈ U ∩ (v + V )⊆Fix(v + T ) (Fact). Then PUT

ny = y and
T ny = y − nv (Fact). We have

〈PUT
nx − y ,T nx + nv − PUT

nx〉
= 〈PUT

nx − y ,T nx − PUT
nx − (y − nv − y)〉

= 〈PUT
nx − PUT

ny ,T nx − PUT
nx − (T ny − PUT

ny)〉
= 〈PUT

nx − PUT
ny , (Id−PU )T

nx − (Id−PU )T
ny〉

→ 0,

where the limit follows from an earlier result.

When A = NU and B = NV we have T = TA,B = Id−PU + PV (2PU − Id).
19



Application to the convex feasibility problem

Theorem
Suppose that U and V are nonempty closed convex subsets of X , and that
U ∩ (v + V ) 6= ∅. Let x ∈ X . Then (PUT

nx)n∈N converges weakly to
some point in U ∩ (v + V ).

Proof.
Let y ∈ U ∩ (v + V )⊆Fix(v + T ) (Fact). Then PUT

ny = y and
T ny = y − nv (Fact). We have

〈PUT
nx − y ,T nx + nv − PUT

nx〉
= 〈PUT

nx − y ,T nx − PUT
nx − (y − nv − y)〉

= 〈PUT
nx − PUT

ny ,T nx − PUT
nx − (T ny − PUT

ny)〉
= 〈PUT

nx − PUT
ny , (Id−PU )T

nx − (Id−PU )T
ny〉

→ 0,

where the limit follows from an earlier result.

When A = NU and B = NV we have T = TA,B = Id−PU + PV (2PU − Id).
19



Application to the convex feasibility problem

Theorem
Suppose that U and V are nonempty closed convex subsets of X , and that
U ∩ (v + V ) 6= ∅. Let x ∈ X . Then (PUT

nx)n∈N converges weakly to
some point in U ∩ (v + V ).

Proof.
Let y ∈ U ∩ (v + V )⊆Fix(v + T ) (Fact). Then PUT

ny = y and
T ny = y − nv (Fact). We have

〈PUT
nx − y ,T nx + nv − PUT

nx〉
= 〈PUT

nx − y ,T nx − PUT
nx − (y − nv − y)〉

= 〈PUT
nx − PUT

ny ,T nx − PUT
nx − (T ny − PUT

ny)〉
= 〈PUT

nx − PUT
ny , (Id−PU )T

nx − (Id−PU )T
ny〉

→ 0,

where the limit follows from an earlier result.

When A = NU and B = NV we have T = TA,B = Id−PU + PV (2PU − Id).
19



Application to the convex feasibility problem

Proof continued.

I Fact: (T nx + nv)n∈N is Fejér monotone w.r.t. U ∩ (v + V ).

I Fact: (PUT
nx)n∈N is bounded and its weak cluster points lie in

U ∩ (v + V ).

I We just proved

〈PUT
nx

=

un

− y∈

U∩(v+V )

, (T nx + nv)

=

xn

− PUT
nx

=

un

〉 → 0.

I Apply the Fejér monotonicity lemma with (E , (un)n∈N, (xn)n∈N)
replaced by (U ∩ (v + V ), (PUT

nx)n∈N, (T nx + nv)n∈N).

Lemma: Suppose that E is a nonempty closed convex subset of X , that (xn)n∈N is a
sequence in X that is Fejér monotone with respect to E , i.e.,
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Example

Figure: A GeoGebra snapshot. U and V are two nonintersecting sets in R2. Also,
the first few iterates of the governing sequence (T nx)n∈N (red points) and the
shadow sequence (PUT

nx)n∈N (blue points) are shown.
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The Douglas–Rachford operator for two affine subspaces

In the following we set
TU,V := TNU ,NV

,

where U and V are nonempty closed convex subsets of X .

Proposition
Suppose that U and V are affine subspaces of X . Set A := NU , B := NV

and T := TU,V . Let x ∈ X . Then the following hold.

(i) v ∈ (parU)⊥ ∩ (parV )⊥.

(ii) (∀α ∈ R) PUx = PU (x + αv).

(iii) (∀n ∈N) T nx + nv = T n
U,v+V x .

Let U be an affine subspace of X. Then parU = U −U.
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Convergence of the shadows

Theorem
Let x ∈ X . Then the following hold.

(i) (∀n ∈N) PUT
nx = PUT

n
U,v+V x .

(ii) PUT
nx → PU∩(v+V )x . If parU + parV is closed then the convergence

is linear with rate cF (parU, parV ) < 1.

Proof

(i): We want to show that (∀n ∈N) PUT
nx = PUT

n
U,v+V x .

Let n ∈N and recall that v ∈ (parU)⊥.
PUT

nx = PU (T
nx + nv)= PUT

n
U,v+V x .

The cosine of the Friedrichs angle between parU and parV is cF :=
sup

{
|〈u, v 〉| | u ∈ parU ∩ (parU ∩ parV )⊥, v ∈ parV ∩ (parU ∩ parV )⊥, ‖u‖ ≤ 1, ‖v‖ ≤ 1

}
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Sketch of the proof (continued)

(ii): We want to show that PUT
nx → PU∩(v+V )x .

Fact (Bauschke, Cruz, Nghia, Phan, Wang (2014))
Suppose that U and V are closed affine subspace of X such that U ∩V 6= ∅. Then

T nx → PFixT x , PUT
nx → PU∩V x , and PVT nx → PU∩V x . If parU + parV is

closed then the convergence is linear with rate cF (parU, parV ) < 1.

Step 1: Since U and v + V are closed affine subspace of X and
U ∩ (v + V ) 6= ∅, we can apply the above fact to the sets U and v + V
to get PUT

n
U,v+V x → PU∩(v+V )x .

Step 2: Using (i) we have PUT
nx = PUT

n
U,v+V x , which when combined with

step 1 proves the claim.

Step 3: Finally notice that par(v + V ) = parV , hence if parU + parV is closed
then the convergence is linear with rate cF (parU, parV ) < 1, where cF
is the cosine of the Friedrichs angle between U and V .

cF :=
sup

{
|〈u, v 〉| | u ∈ parU ∩ (parU ∩ parV )⊥, v ∈ parV ∩ (parU ∩ parV )⊥, ‖u‖ ≤ 1, ‖v‖ ≤ 1

}
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When one set is an affine subspace

Recall that
v := PU−V (0) ∈ ran(Id−T ).

Theorem (convergence of DRA when U is a closed affine
subspace)
Suppose that U is a closed affine subspace of X and that V is a nonempty
closed convex subset of X . Let x ∈ X . Then

(i) The shadow sequence (PUT
nx)n∈N converges weakly to some point in

U ∩ (V + v).

(ii) No general conclusion can be drawn about the sequence (PVT
nx)n∈N.
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Example

26

To prove: No general conclusion can be drawn about the sequence
(PVT

nx)n∈N. Recall that we proved the weak convergence of
(PUT

nx)n∈N to a best approximation solution.

Example

Suppose that X = R2, that
U = R× {0} and that
V = epi (|·|+ 1). Then
U ∩ V = ∅ and for the starting
point x ∈ [−1, 1]× {0} we have
(∀n ∈ {1, 2, . . .})
T nx = (0, n) ∈ V and therefore
‖PVT

nx‖ = ‖T nx‖ = n→ +∞.



Application to the convex feasibility problems
for more than two sets

Theorem
Suppose that V1, . . . ,VM are closed convex subsets of X . Set X = XM ,
U =

{
(x , . . . , x) ∈ X

∣∣ x ∈ X
}

and V = V1 × · · · × VM . Let
T = Id−PU + PV(2PU − Id), let x ∈ X and suppose that
v = (v1, . . . , vM ) := PU−V0 ∈ U−V. Then the shadow sequence

(PUT
nx)n∈N converges to x̄ = (x̄ , . . . , x̄) ∈ U∩ (v+V), where

x̄ ∈ ⋂M
i=1(vi + Vi ) and x̄ is a least-squares solution of

find a minimizer of
M

∑
i=1

d2
Vi

.
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Application to the convex feasibility problems
for more than two sets

Figure: A GeoGebra snapshot. The DRA finds a point in the generalized
intersection. Shown are the original sets as well the translated sets that forms this
intersection.
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And beyond feasibility!

Theorem
Suppose that

I U is a closed affine subspace of X ,

I A = NU , that B is rectangular,

I v = Pran(Id−T )0 ∈ ran(Id−T ),

I zer(vA) ∩ zer(Bv ) 6= ∅ and

I all weak cluster points of (JAT
nx)n∈N = (PUT

nx)n∈N lie in Zv .

Let x ∈ X . Then (JAT
nx)n∈N = (PUT

nx)n∈N converges weakly to some
point in Zv .

Let C : X ⇒ X . Then C rectangular (this is also known as paramonotone) if A is
monotone and we have the implication

(x , u) ∈ grC
(y , v ) ∈ grC

〈x − y , u − v 〉 = 0

 ⇒
{
(x , v ), (y , u)

}
⊆ grC .
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How far could the results be generalized?
I Known: U and V are (possibly nonintersecting) nonempty closed

convex subsets ⇒ (PUT
nx)n∈N is bounded and its weak cluster points

are normal solutions.

I New results: U and V are nonempty closed convex subset (possibly
nonintersecting) ⇒ (PUT

nx)n∈N converges weakly to a best
approximation solution.

I Still open: What happens in the case of general subdifferential
operators, i.e., when A and B are subdifferential operators of convex
functions that are not necessarily indicator functions?

Example
Suppose that U is a closed linear subspace of X , that A := NU , that
b ∈ U r {0} and that B : X → X : x 7→ b.

I Recall that v = Pran(Id−T )0 = Pran(b+U⊥)0 = b− PU⊥b = b 6= 0, i.e.,

the sum problem (find x ∈ X such that 0 ∈ Ax + Bx) is inconsistent.
However, v = b ∈ b+ U⊥ = ran(Id−T ), hence Zv 6= ∅.

I One can show that (∀n ∈N) T nx = PUx − nb, hence ‖T nx‖ → +∞.

I Consequently, PUT
nx= T nx , hence ‖PUT

nx‖ → +∞ (unbounded!).
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Convergence of shadows: Brief literature review

I Krasnosel’skĭı–Mann (1950s)

T nx −−−→
weakly

some point in FixT 6= zer(A+ B).

I Combettes (2004) JA(FixT ) = zer(A+ B).

I Lions–Mercier (1979) The bounded sequence (JAT
nx)n∈N has its weak

cluster points lie in zer(A+ B) provided that A+ B is maximally
monotone.

I Svaiter (2011)

JAT
nx −−−→

weakly
some point in zer(A+ B).
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Attouch–Théra duality and the Douglas–Rachford operator
The (Attouch–Théra) dual problem for the ordered pair (A,B) is to find a
zero of A−1 + B−>, where B := (− Id) ◦ B ◦ (− Id). The primal
(respectively dual) solutions are the solutions to the primal (respectively dual)
problem given by

Z := zer(A+ B) and K := zer(A−1 + B−>).

Fact (Eckstein (1989))

T(A,B) = T(A−1,B−>).

Corollary

(Z ,K ) = (JA(FixT ), JA−1(FixT )).

Proof.
Combine Combettes’s result (Z = JA(FixT )), applied to the primal and the
dual problems, with Eckstein’s above result.
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Proof.
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dual problems, with Eckstein’s above result.
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Shadows’ convergence: Useful identities
Recall that we proved earlier the useful identity:

‖x − y‖2 = ‖Tx − Ty‖2 + ‖(Id−T )x − (Id−T )y‖2

+ 2〈JAx − JAy , JA−1x − JA−1y〉
+ 2〈JBRAx − JBRAy , JB−1RAx − JB−1RAy〉.

Using the inverse resolvent identity JA + JA−1 = Id, write:

‖x − y‖2 = ‖JAx − JAy + JA−1x − JA−1y‖2

= ‖JAx − JAy‖2 + ‖JA−1x − JA−1y‖2 + 2〈JAx − JAy , JA−1x − JA−1y〉.
and

‖Tx − Ty‖2 = ‖JATx − JATy‖2 + ‖JA−1Tx − JA−1Ty‖2

+ 2〈JATx − JATy , JA−1Tx − JA−1Ty〉.
Substituting in the first identity and simplifying yields:
‖JAx − JAy‖2 + ‖JA−1x − JA−1y‖2 − ‖JATx − JATy‖2 − ‖JA−1Tx − JA−1Ty‖2

= ‖(Id−T )x − (Id−T )y‖2 + 2〈JATx − JATy , JA−1Tx − JA−1Ty〉
+ 2〈JBRAx − JBRAy , JB−1RAx − JB−1RAy〉.
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Shadows’ convergence: Useful identities

We now have

‖JAx − JAy‖2 + ‖JA−1x − JA−1y‖2 − ‖JATx − JATy‖2 − ‖JA−1Tx − JA−1Ty‖2

= ‖(Id−T )x − (Id−T )y‖2 + 2〈JATx − JATy , JA−1Tx − JA−1Ty〉︸ ︷︷ ︸
≥0

+ 2〈JBRAx − JBRAy , JB−1RAx − JB−1RAy〉︸ ︷︷ ︸
≥0

.

Hence we conclude that

‖JATx − JATy‖2 + ‖JA−1Tx − JA−1Ty‖2 ≤ ‖JAx − JAy‖2 + ‖JA−1x − JA−1y‖2.

Working in X × X , we can just write

‖(JATx , JA−1Tx)− (JATy , JA−1Ty)‖2 ≤ ‖(JAx , JA−1x)− (JAy , JA−1y)‖2.
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Shadows convergence: A simplified proof
Recall that the so-called Kuhn–Tucker set is defined by

S := S(A,B) := {(z , k) ∈ X × X | − k ∈ Bz , k ∈ Az} ⊆ Z ×K .

Theorem
Suppose that Z = zer(A+ B) 6= ∅. Let x ∈ X and let (z , k) ∈ S . Then the
following hold:

(i) For every n ∈N, we have
‖(JAT n+1x , JA−1T n+1x)− (z , k)‖2 ≤ ‖(JAT nx , JA−1T nx)− (z , k)‖2,
i..e., (JAT

nx , JA−1T nx)n∈N is Fejér monotone with respect to S .

(ii) (JAT
nx , JA−1T nx)n∈N converges weakly to some point in S .

Proof.
(i): We have z + k ∈ FixT (details omitted). Therefore (∀n ∈N)
(z , k) = (JA(z + k), JA−1(z + k)) = (JAT

n(z + k), JA−1T n(z + k)). Apply
‖(JATx , JA−1Tx)− (JATy , JA−1Ty)‖2 ≤ ‖(JAx , JA−1x)− (JAy , JA−1y)‖2

with (x , y) replaced by (T nx , z + k). (ii): We prove the weak cluster points
of the bounded sequence (JAT

nx , JA−1T nx)n∈N lie in S (details omitted).
Now combine with (i) and use the classical Fejér monotonicity principle.
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Attouch, H., and Théra, M. (1996). A general duality principle for the sum of
two operators, Journal of Convex Analysis 3:1–24.

Bauschke, H.H. and Combettes, P.L. (2017). Convex Analysis and Monotone
Operator Theory in Hilbert Spaces, Springer.
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